精品人妻无码一区二区三区软件 ,麻豆亚洲AV成人无码久久精品,成人欧美一区二区三区视频,免费av毛片不卡无码

您現(xiàn)在的位置是:首頁SCI期刊ACM Transactions on Knowledge Discovery from Data(ACM數(shù)據(jù)知識發(fā)現(xiàn)匯刊)
ACM Transactions on Knowledge Discovery from Data

ACM Transactions on Knowledge Discovery from Data SCIE

ACM數(shù)據(jù)知識發(fā)現(xiàn)匯刊

1556-4681

工程技術

No

ACM T KNOWL DISCOV D

2006

26

UNITED STATES

http://tkdd.acm.org/index.html

約3.0個月審稿時間

較易平均錄用比例

2.538影響因子

計算機:信息系統(tǒng)小學科

SCI三劍客

中文簡介

TKDD歡迎關于知識發(fā)現(xiàn)和各種形式數(shù)據(jù)分析的全方位研究的論文。這些主題包括但不限于:數(shù)據(jù)挖掘和大數(shù)據(jù)分析的可擴展和有效算法、挖掘大腦網(wǎng)絡、挖掘數(shù)據(jù)流、挖掘多媒體數(shù)據(jù)、挖掘高維數(shù)據(jù)、挖掘文本、Web和半結構化數(shù)據(jù)、挖掘時空數(shù)據(jù)、社區(qū)生成的數(shù)據(jù)挖掘、社會網(wǎng)絡分析。分析和圖形結構化數(shù)據(jù)、數(shù)據(jù)挖掘中的安全和隱私問題、可視化、交互式和在線數(shù)據(jù)挖掘、數(shù)據(jù)挖掘的預處理和后處理、健壯和可擴展的統(tǒng)計方法、數(shù)據(jù)挖掘語言、數(shù)據(jù)挖掘的基礎、KDD框架和過程,以及利用DAT的新型應用程序和基礎設施。包括大規(guī)模并行處理和云計算平臺的挖掘技術。TKDD鼓勵在計算機、并行或多處理計算機或新數(shù)據(jù)設備的大型分布式網(wǎng)絡環(huán)境中探討上述主題的論文。TKDD還鼓勵那些描述當前數(shù)據(jù)挖掘技術無法滿足的新興數(shù)據(jù)挖掘應用程序的論文。TKDD歡迎那些既為數(shù)據(jù)挖掘、大數(shù)據(jù)奠定理論基礎,又為大規(guī)模數(shù)據(jù)挖掘系統(tǒng)和工具、數(shù)據(jù)挖掘接口工具和與整體信息處理基礎設施集成的數(shù)據(jù)挖掘工具的設計和實現(xiàn)提供新見解的論文。TKDD還接受描述用戶和數(shù)據(jù)挖掘開發(fā)人員以及大型現(xiàn)實數(shù)據(jù)挖掘應用程序中的管理經(jīng)驗和問題的論文。強調(diào)理論與實踐的結合是鼓勵理論論文的作者考慮理論結果的適用性和/或可實現(xiàn)性,同時鼓勵系統(tǒng)論文的作者反思可能用于構建系統(tǒng)和/或就問題提供建議的理論結果。這可能需要理論上的處理。TKDD還要求對與TKDD相關的主題進行重點調(diào)查。這些應該很深,有時會很窄,但應該有助于我們理解數(shù)據(jù)庫的一個重要領域或子領域。針對廣泛的計算機科學受眾或可能影響其他計算研究領域的調(diào)查的更一般的調(diào)查應繼續(xù)進行ACM計算調(diào)查。對數(shù)據(jù)挖掘研究最新進展的簡要調(diào)查更適合于ACM Sigkdd的勘探。TKDD調(diào)查應該通過提供一個相對成熟的數(shù)據(jù)庫研究機構來教育數(shù)據(jù)庫的讀者。有關TKDD將接受的論文類型的更多信息,請參閱編輯指南。國際編輯委員會由該領域各子領域的公認專家組成,所有這些專家都承諾將TKDD作為該領域的首要出版物。論文應以電子方式提交給ACM TKDD手稿中心。編委會與ACM的知識發(fā)現(xiàn)和數(shù)據(jù)挖掘特別興趣小組(SIGKDD)以及其他協(xié)會保持聯(lián)系,鼓勵提交高級和原始論文。在適當情況下,可以將簡明的結果作為技術說明提交;也歡迎對早期出版物的技術評論。該雜志出現(xiàn)在ACM數(shù)字圖書館,因此可供許多個人和機構的數(shù)字圖書館用戶使用。TKDD也將被收錄在sigkdd選集和sigkdd數(shù)字研討會的cdrom出版物中。這些分散的媒體(打印、web、cdrom、dvdrom)廣泛分布,確保知識發(fā)現(xiàn)和數(shù)據(jù)挖掘研究人員可以輕松獲得TKDD文章。TKDD的存在有助于定義知識發(fā)現(xiàn)和數(shù)據(jù)挖掘研究領域。它包括抽象和模型的開發(fā)、形式化和驗證,以描述數(shù)據(jù)挖掘應用程序,以及用于知識發(fā)現(xiàn)和自動分析大量數(shù)據(jù)的設計和實現(xiàn)方法。

http://mc.manuscriptcentral.com/tkdd

英文簡介

TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but not limite to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.TKDD welcomes papers that both lay theoretical foundations for data mining, big data and those that provide new insights into the design and implementation of large-scale data mining systems and tools, data mining interface tools, and data mining tools that integrate with the overall information processing infrastructure. TKDD also accepts papers that describe user and data mining developer and administration experiences and issues in large-scale real-world data mining applications. The emphasis on integration of theory and practice is an attempt to encourage authors of theory papers to consider applicability and/or implementability of the theoretical results, while encouraging authors of systems papers to reflect on the theoretical results that may have been used in building the systems and/or to offer suggestions on issues that may require theoretical treatment.TKDD also solicits focused surveys on topics relevant to TKDD. These should be deep and will sometimes be quite narrow, but should make a contribution to our understanding of an important area or subarea of databases. More general surveys that are intended for a broad-based Computer Science audience or surveys that may influence other areas of computing research should continue to go to ACM Computing Surveys. Brief surveys on recent developments in data mining research are more appropriate for ACM SIGKDD Explorations. TKDD surveys should be educational to the database audience by presenting a relatively well-established body of database research.For additional information on the types of papers TKDD will accept, see Editorial Guidelines.The international Editorial Board is composed of recognized experts in the various subareas of this field, all with a commitment to maintain TKDD as the premier publication in this active field. Papers should be submitted electronically to ACM TKDD manuscript center. The Editorial Board maintains contact with ACM's Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), as well as with other societies, to encourage submittal of advanced and original papers. When appropriate, concise results may be submitted as technical notes; technical comments on earlier publications are welcome as well.The journal appears in the ACM Digital Library and is thus available to the many individual and institutional DL subscribers. TKDD will be also included in the SIGKDD Anthology and SIGKDD Digital Symposium Collection CDROM publications. These disparate media (print, web, CDROM, DVDROM), widely distributed, ensure that TKDD articles are easily available to knowledge discovery and data mining researchers.The existence of TKDD has helped to define the field of knowledge discovery and data mining research. It encompasses the development, formalization, and validation of abstractions and models to describe data mining applications and the design and implementation methods for knowledge discovery and automated analysis of large amount of data.

SCI服務流程
服務流程
常見問題
Q&A
目前體育這一方向也是尤為備受關注的,而不少相關作者在選擇期刊時,會更傾向于國際期刊如我們最為熟知的知名SCI以
說起SCI論文,發(fā)表論文的作者也都知道,是被SCI(Scientific Citation Index,《科學引文索引》)收錄的期刊所刊登的論文。備受
sci作為國際知名學術檢索平臺,其收錄的期刊被廣大學者和研究人員所關注,而這些sci期刊分區(qū)信息,可直接反映了期刊
對于想要繼續(xù)深造讀博的電氣專業(yè)來說,發(fā)表幾篇SCI論文可以為你以后的道路保駕護航,那么 電氣工程師發(fā)表sci難嗎 ?眾

影響因子趨勢圖

SCI服務明細

工程技術方向的SCI期刊推薦
R&J
大類學科同領域優(yōu)質期刊 大類學科 小類學科 影響因子 分區(qū) ISSN
ACM TRANSACTIONS ON DATABASE SYSTEMS 工程技術 計算機:信息系統(tǒng) 1.9 N/A 0362-5915
ACM Transactions on Information and System Security 工程技術 計算機:信息系統(tǒng) 2.667 N/A 1094-9224
ACM TRANSACTIONS ON INFORMATION SYSTEMS 工程技術 計算機:信息系統(tǒng) 2.627 N/A 1046-8188
ACM Transactions on Internet Technology 工程技術 計算機:信息系統(tǒng) 2.382 N/A 1533-5399
ACM Transactions on Multimedia Computing Communications and Applications 工程技術 計算機:信息系統(tǒng) 2.87 N/A 1551-6857
ACM Transactions on Sensor Networks 工程技術 計算機:信息系統(tǒng) 2.507 N/A 1550-4859
ACM Transactions on the Web 工程技術 計算機:信息系統(tǒng) 1.58 N/A 1559-1131
ACTA INFORMATICA 工程技術 計算機:信息系統(tǒng) 1.042 4區(qū) 0001-5903
Ad Hoc & Sensor Wireless Networks 工程技術 計算機:信息系統(tǒng) 0.948 N/A 1551-9899
Ad Hoc Networks 工程技術 計算機:信息系統(tǒng) 3.49 3區(qū) 1570-8705
品牌工程技術人才職稱設置初級、中級、高級三個層級,其中初級分設員級和助理級,高級分設副高級和正高級。以下是...
工程技術領域的期刊影響因子也是會有所變更的,并不會一成不變,所以我們在選擇該領域期刊時一定要以最新影響因子...
我們都知道SCI收錄所涉及的范圍是非常廣的,尤其是作為《科學引文索引》,主要是側重于理科方向的,因此工程技術類...
在現(xiàn)代工程技術領域,研究成果的及時發(fā)布對于推動科技進步和創(chuàng)新至關重要,但對于著急展現(xiàn)自己學術研究成果時,一...
為做好 2022年度天津市工程技術系列網(wǎng)信專業(yè)(副高級、中級)職稱評審工作 ,按照市人社局《關于開展2022年度專業(yè)技術職...

發(fā)現(xiàn)心儀選題請?zhí)顔?/b>

獲取發(fā)表周期短、審稿速度快容易錄用的期刊